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a b s t r a c t

In this paper, a mathematical model for electroosmotic flow of power-law fluids in a rectangular
microchannel at high zeta potential is analyzed. The electric double layer (EDL) potential distribution
is considered without Debye Huckel linear approximation. Numerical solution is obtained to analyze the
fluid flow behavior. Parametric studies are conducted to assess the variation of shear stress, viscosity and
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volumetric flow rates of various values of flow behavior index (n). Computed results are used to explicate
the possibility of using a relatively pseudoplastic fluid inside microchannel to obtain higher volumetric
flow rates.

© 2010 Elsevier B.V. All rights reserved.
lectric double layer
ower-law fluid

. Introduction

The advent of microfluidic devices in various areas of scientific
esearch is due to their versatile features like, high surface-to-
olume ratio, high rates of heat and mass transport leading to
etter separations, reactions, detections and high safety [1–6]. The
arious applications of microfluidic devices range from microreac-
ors [7–10], heat transfer in electronic circuits [11,12], micro-total
nalysis systems (�TAS) involving DNA analysis and sequencing,
io-sensors, drug delivery [13–16], etc. In these applications, a
ide variety of fluids ranging from simple electrolyte solutions to

omplex cell suspensions and polymer melts are dealt. Hence, in
rder to achieve better manipulation and control over fluid flow
f such variety of fluids inside a microfluidic device, an in depth
nderstanding of the transport process involved in microscales is
ssential. Electroosmotic flow (EOF) is the flow induced by the
pplication of electric field across the channel and due to the pres-
nce of EDL at the channel wall [17]. The growing importance to
he electroosmotic flow in the field of microfluidics is due to their
perational advantages, like, plug flow type flow behavior, negligi-
le axial dispersion, absence of mechanical pumping equipments
nd better flow control.

Several researchers have investigated various aspects of EOF in

icrochannels [18–33]. In most of the works, electrostatic poten-

ial distribution of EDL in microchannel is obtained by solving
oisson–Boltzmann equation with Debye Huckel linear approxi-
ation. Hence, above analyses are expected to be valid only in

∗ Corresponding author. Tel.: +91 3222 283926; fax: +91 3222 255303.
E-mail address: sde@che.iitkgp.ernet.in (S. De).

927-7757/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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case of low zeta potentials (i.e.,
∣∣ze�/kBT∣∣ ≤ 1, for a symmetric elec-

trolyte). However, in course of time, zeta potential in microchannel
is being used as an important parameter to facilitate transport and
separation of species [34]. It is possible to alter the zeta poten-
tial in a microchannel as desired by means of changing electrolyte
concentrations, adding surfactants and by polymeric coatings on
surface [35–37]. Hence it is extremely realistic to have zeta poten-
tials (

∣∣�∣∣) as high as 100 mV inside a microchannel and in such
cases Debye Huckel linear approximation fails to provide accu-
rate electrostatic potential distribution. However, most of research
works reported are limited by Debye Huckel linear approxima-
tion. Relatively few works are available on application of high zeta
potentials in microchannels without Debye Huckel linear approx-
imation [20–22,34,38–40]. Some of the most remarkable works
related to high zeta potentials in microchannels are mentioned
below. Levine et al. [20] was the first to study electrokinetic flow in
cylindrical capillaries without Debye Huckel linear approximation.
The analysis is performed satisfactorily using approximation given
by Philip and Wooding (in obtaining EDL potential distribution
around a charged cylindrical particle in an electrolyte) [41]. In 1975,
Levine et al. [21] analyzed the electrokinetic flow in a narrow par-
allel plate channel. An analytical expression for electric potential
in the form of a rapidly converging infinite series is obtained pro-
viding robust analysis without Debye Huckel linearization. Dutta
and Beskok [22] studied the combined electroosmotic (EOF) and
pressure driven flows (PDF) in microchannel beyond Debye Huckel

approximation (DH approximation). Electrokinetic transport of
solutes in nano-channels for high zeta potentials is analyzed by
Pennathur and Santiago [38]. Effect of streaming potential on solute
dispersion in nano-channels is studied by Xuan [39]. In that work,
electric potential distribution is given as an elliptical function of

dx.doi.org/10.1016/j.colsurfa.2010.07.014
http://www.sciencedirect.com/science/journal/09277757
http://www.elsevier.com/locate/colsurfa
mailto:sde@che.iitkgp.ernet.in
dx.doi.org/10.1016/j.colsurfa.2010.07.014


N. Vasu, S. De / Colloids and Surfaces A: Physicochem. Eng. Aspects 368 (2010) 44–52 45

Nomenclature

C Concentration (kg/m3)
Ex Electric field strength (V/m)
F Body force term
Fx x-component of body force term
Q Volumetric flow rate of power-law fluid (m3/s)
Qo Volumetric flow rate of Newtonian fluid (m3/s)
T Absolute temperature (K)
e Electron charge, 1.6 × 10−19 C
h Half height of channel (m)
kB Boltzmann constant, 1.3805 × 10−23 J mol−1 K−1

m Flow consistency index, 0.9 × 10−3 Pa s
n Flow behavior index
no Number concentration of electrolyte
vx Velocity in axial direction (m/s)
vavg Average velocity (m/s)
vs Generalized Smoluchowski velocity of power-law

fluid (m/s)
vso Smoluchowski velocity of Newtonian fluid (m/s)
w Width of microchannel (m)
x Axial co-ordinate
y Transverse co-ordinate
z Valency of the electrolyte

Greek Symbols
˛ Parameter in Eq. (9)
ε Dielectric constant of the medium, dimensionless
εo Permitivity of vacuum, 8.854 × 10−12 C V−1 m−1

� Zeta potential (V)
�−1 EDL thickness (m)
� Viscosity of the power-law fluid (Pa s−n)
�o Viscosity of the Newtonian fluid (Pa s)
�ws Viscosity of the power-law fluid at channel wall

(Pa s−n)
� Charge density (C m−3)
�f Density of fluid (kg m−3)
� Shear stress (Pa)
�ws Wall Shear stress (Pa)
� Electrostatic potential across the channel (V)

p
a
o
p
z
d
c
fl

Consider a microchannel between two parallel plates separated

T
S

otential at centre and transverse axis co-ordinate. An iterative
lgorithm to find the potential at centre of microchannel based
n zeta potential is presented [39]. Dutta [34] studied the trans-
ort of charged solutes in micro- and nano-fluidic channels at high
eta potentials. The effect of zeta potential on solute transport is

escribed in detail. Recently, Elazhary and Soliman [40] theoreti-
ally studied the fluid flow and heat transfer during pressure driven
ow at high zeta potentials.

able 1
tudies on non-Newtonian fluid flow in microchannels.

Reference Theory Experiments

Das and Chakraborty [42] Power-law, u, C, T
Chakraborty [43] Power-law, u
Zhao et al. [44] Power-law, u
Berli and Olivares [45] Power-law, u
Tang et al. [46] Power-law, u
Afonso et al. [47] Viscoelastic, u
Bharti et al. [48] Power-law, u
Berli [49] Power-law, Q Comparison
Tang et al. [50] Power-law, u
Present work Power-law, u
Fig. 1. Schematic diagram of a rectangular microchannel (height 2h; width w).

All the above mentioned research works are confined to Newto-
nian fluid flow in microchannels. However, flows present in micro-
and nano-channels are not always Newtonian in nature. There
are comparatively few works reported in the literature charac-
terizing the non-Newtonian fluid flow in microchannels [42–50].
The available works on this topic are summarized in Table 1.
According to knowledge of authors, majority of works available in
non-Newtonian rheology are confined to DH approximation and
fails to explain flows in case of high zeta potentials. Thus, it is evi-
dent that there is necessity of research to be carried out in analysis
of non-Newtonian flows in microchannels without DH approxima-
tion.

In this work, a detailed analysis of flow behavior of power-
law fluids subjected to electroosmotic forces in a rectangular
microchannel is undertaken. It is emphasized that the present work
is not limited by Debye Huckel linear approximation and strongly
applicable to characterize electroosmotic flow of power-law flu-
ids in microchannels. Accurate prediction of non-Newtonian flow
behavior at high zeta potentials is the novelty of this present work.
Velocity profiles of various values of flow behavior index (n) are
obtained. The obtained numerical solutions of velocity profiles are
compared with analytical solutions presented by Zhao et al. [44] at
low zeta potentials and are found to be in good agreement. Effects of
electrokinetic radius (�h), flow behavior index (n), applied electric
field, zeta potential on shear stress, viscosity and volumetric flow
rate during electroosmotic flow of power-law fluids are analyzed.

2. Theory

2.1. Geometry description
by a distance of ‘2h’. The system geometry is sketched in Fig. 1.
The channel wall is considered to have uniform surface charge
and hence a uniform zeta potential (�) exists at the stern layer

Fluid flow Electric potential

Pure EOF With DH approximation
Pure EOF With DH approximation
Pure EOF With DH approximation
EOF + PDF With DH approximation
Pure EOF Lattice Boltzmann method
EOF + PDF With DH approximation
PDF Numerical solution
EOF + PDF With DH approximation
PDF Lattice Boltzmann method
EOF High zeta potentials, without DH approximation
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f the EDL. It is assumed that the fluid is continuous and isother-
al (negligible Joule heating effects). The dielectric constant (ε) of

he medium is constant and uniform everywhere inside the flow
omain.

A steady, laminar, fully developed flow of an incompressible
ower-law fluid containing symmetric electrolyte, subjected to
lectroosmotic flow is considered for investigation. Under the
bove mentioned flow conditions, the elastic effects are negligi-
le and the dominant factor is the viscosity which depends upon
hear rate.

.2. Power-law fluids

In non-Newtonian fluids, the viscous stress is a non-linear func-
ion of shear rate or velocity gradient (dvx/dy). The rheology of fluid
nder investigation here is described by the power-law model (also
nown as the Ostwald-de Waele model). A power-law fluid is a
eneralized non-Newtonian fluid whose viscosity (�) is given as:

= m
∣∣∣dvx
dy

∣∣∣n−1

= � = m
(

−dvx
dy

)n−1

(1)

here, m is the flow consistency index, n is the flow behavior index.
he negative sign is incorporated because the velocity decreases
ith increase in y.

The shear stress (�) of a power-law fluid is given as:

= m
(

−dvx
dy

)n−1 dvx
dy

(2)

The indices m, n depends on ionic strength, pH and temperature
f the fluid. The power-law fluids are classified based on the flow
ehavior index n.

.3. Governing equations for fluid flow

A fully developed laminar flow of incompressible power-law
uid is induced in the microchannel by application of electric field
cross the channel causing electroosmotic flow (EOF). The flow is
riven by the electric body force generated due to the presence of
DL at the channel wall. The body force is generated due to the
nteractions of net charge density (�) in EDL and the applied elec-
ric field strength, Ex (V/m). The electric field here is an operating
ondition.

The Navier–Stokes equation which is derived from equation of
otion by assuming constant density is used to define the fluid

ow and is given as:

f
D

Dt
v = −∇.� + F (3)

here, �f is the density of fluid and F is the body force term.
The electric body force on the EDL due to applied electric field

n axial direction is given as:

x = �Ex (4)

As the flow is electroosmotically driven, there is no applied
ressure and gravitational body force. The electric potential dis-
ribution developed due to the presence of EDL in a rectangular

icrochannel, described by the Poisson equation is given as:

d2 

dy2
= − �

εεo
(5)
here, � is the potential distribution of EDL, ε is the dielec-
ric constant of medium and εo is the permittivity of vacuum
8.854 × 10−12 C V−1 m−1. The charge density in EDL is given by
he Boltzmann distribution with following assumptions: (i) ions
ochem. Eng. Aspects 368 (2010) 44–52

are point charges and (ii) permittivity of fluid is constant and not
affected by overall field strength:

� =
∑

nze = −2noze sinh

(
ze 

kBT

)
(6)

d2 

dy2
= −2noze

εεo
sinh

(
ze 

kBT

)
(7)

The above differential equation is subject to boundary condi-
tions:

At y = 0
d 

dy
= 0 (8a)

At y = h = � (8b)

where, no is the bulk number concentration, z is the valency of
ions, e is charge of an electron (1.6 × 10−19 C), kB is the Boltzmann
constant, T is the absolute temperature of the system.

The solution for electric potential distribution in a rectangular
microchannel is given as [51]:

 = 4�
˛

tan h−1
[

tan h
(
˛

4

)
exp (�y− �h)

]
(9)

where,˛= ze�/kBT and �2 = 2noz2e2/C-- C-- okBT, �−1 is the Debye length
or thickness of EDL, respectively. The above expression for poten-
tial distribution is obtained by assuming that the EDL potential
dies out at the center of microchannel i.e., the case of thin EDL
(�h ≥ 1). Hence this entire analysis is valid for high zeta potentials
but without EDL overlap.

The modified Navier–Stokes equation incorporating the electric
body force term (simplified from Eq. (3)) is given as:

d

dy

[
m

(
−dvx
dy

)n−1 dvx
dy

]
− εεoEx d

2 

dy2
= 0 (10)

The above equation is subjected to the following boundary con-
ditions:

At y = 0
dvx
dy

= 0 (11a)

At y = h vx = 0 (11b)

Integrating Eq. (10) and subject to boundary condition Eqs. (8a)
and (11a) gives:

(
−dvx
dy

)
=

[
−εεoEx

m

d 

dy

]1/n

(12)

Integrating Eq. (7) subject to boundary conditions in Eqs. (8a)
and (8b), the following expression is resulted:

d 

dy
= �

(
2�
˛

)
sinh

(
˛ 

2�

)
(13)

From Eq. (12), the velocity gradient of the power-law fluid is
given as:

dvx
d

= −
[
−�εεoEx�

m

]1/n
[

2
˛

sinh

(
˛ 

2�

)]1/n

(14)

The expression for viscosity of power-law fluids is given as:

� = m
(

−dvx
)n−1
dy

= m1/n(−�εεoEx�)(n−1)/n

[
2
˛

sinh

(
˛ 

2�

)](n−1)/n

(15)
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The shear stress distribution can be given as:

yx = −m
(

−dvx
dy

)n
(16)

By putting  = � and y = h in Eqs. (15) and (16), the wall shear
tress (�ws) and dynamic viscosity of power-law fluid at channel
all (�ws) are given as:

ws = 2�εεoEx�
˛

sinh
(
˛

2

)
(17)

ws = m1/n(−�εεoEx�)(n−1)/n
[

2
˛

sinh
(
˛

2

)](n−1)/n
(18)

The velocity distribution of electroosmotic flow of power-law
uids is obtained by integrating Eq. (14) subject to boundary con-
ition Eq. (11b) and is given as:

x(y) = �(1−n)/n
[
−εεoEx�

m

]1/n
�h∫
�y

[
2
˛

sinh
{

2 tan h−1
(

tan h
(
˛

4

)
e

The expression for average velocity (vavg) is given as:

avg = �(1−n)/n

h

[
−εεoEx�

m

]1/n
h∫
0

⎛
⎜⎝

�h∫
�y

[
2
˛

sinh
{

2 tan h−1
(

tan h
(
˛

The volumetric flow rate (Q) is given as:

= 2 vavghw (21)

where, w is the width of the microchannel. The expressions for
elocity distribution, viscosity, average velocity (Eqs. (15)–(21))
oils down to the expressions given by Zhao et al. [44], under
ebye Huckel linear approximation i.e., the case with low surface
otentials (|�| < 25.4 mV). Hence, the present analysis is strongly
pplicable to characterize electroosmotic fluid flow behavior in
igh zeta potential microfluidic systems.

. Results and discussion

In the previous section, general expressions concerning the
DL electric potential, velocity fields, viscosity, etc., are presented.
ere in this section, a detailed discussion of the numerical solu-

ions obtained is attempted providing new and interesting physical
nsight into non-Newtonian fluid flow in microdevices. A parallel
late microchannel made of silicon (having negative zeta poten-
ial) is considered for analysis. The dimensions of microchannel are
ength 5 × 10−2 m, width 300 �m and height 100 �m. The work-
ng fluids are a range of power-law fluids containing monovalent
ymmetric electrolyte such as KCl or NaCl. The other parameters
mployed are: dielectric constant of medium, C-- = 80, permittiv-
ty of vacuum, C-- o = 8.85 × 10−12 C V−1 m−1, absolute temperature
f system, T = 300 K, valency of ions, z = 1, wall zeta potential,
= −100 mV, flow consistency index, m = 0.9 × 10−3 Pa sn.

.1. Verification of numerical solution:

To ensure accuracy of the computed numerical solution, the
umerical solution computed in this present work is compared
ith analytical results presented by Zhao et al. [44] under Debye

uckel limit. It is already emphasized that, for low zeta potential

ystems, the Eqs. (15)–(21) of present work reduces to standard
nalytical expressions obtained by Zhao et al. [44]. Analytical
olutions of velocity distribution using Debye Huckel linear approx-
mation for n = 1, 1/2, 1/3 are obtained by Zhao et al. [44] and are as
ochem. Eng. Aspects 368 (2010) 44–52 47

y− �h)
)}]1/n

d(�y) (19)

xp (�y− �h)
)}]1/n

d(�y)

⎞
⎟⎠dy (20)

follows:

Forn = 1 vx(y) = −εεoEx�
m

[
1 − cosh(�y)

cosh(�h)

]
(22a)

Forn = 1
2

vx(y) = 1
2
�
(

−εεoEx�
m

)2 [sinh(2�h) − sinh(2�y) − 2(�h− �y)]
2 cosh2(�h)

(22b)

Forn = 1
3

vx(y) = 1
3
�2

(
−εεoEx�

m

)3

× [sinh(3�h) − sinh(3�y) + 9 sinh(�h) − 9 sinh(�y)]

4 cosh3(�h)
(22c)

vavg = n�(1−n)/n
(

−εεoEx�
m

)1/n

×
1

21/n

[(
1 − n

�h

)
e(�h)/n + n−1

�h e
1/n

]
+ 1
�h(1+2n)

cosh1/n(�h)
(22d)

The generalized Smoluchowski velocity for power-law fluids is
given as:

vs = n�(1−n)/n
(

−εεoEx�
m

)1/n
(22e)

From Fig. 2, it can be inferred that the analytical solutions of Zhao
et al. [44] are in good agreement with the numerical solution of the
present work at lower zeta potential and hence the present work
can accurately predict the behavior of high zeta potential systems.
The numerical integration is carried out using Simpson’s rule which
has accuracy of order 10−6.

3.2. Characteristics of electroosmotic flow of power-law fluids

The velocity distribution of electroosmotic flow of power-law
fluids is obtained by numerical integration of Eq. (19). Fig. 3 shows
the velocity distribution of various power-law fluids normalized

with their respective average velocities (obtained from Eq. (20))
across the channel half height. For pseudo plastics (n < 1), the shear
thinning nature reduces the maximum velocity and increases the
velocity in a region very near to the channel wall leading to plug
like behavior. Conversely for n > 1, the liquid is shear thickening
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gradual variation of shear stress across the channel half height. For
ig. 2. Comparison of velocity profiles of present work with analytical expressions
f Zhao et al. [44].

n nature and posses a maximum velocity at center leading to
arabolic velocity profile. The maximum velocity increases with
he flow behavior index (n).

The average velocity of power-law fluids is given by Eq. (20).
ig. 4 shows the average velocity of power-law fluids (vavg) nor-
alized with Smoluchowski velocity of Newtonian fluid (vso =
εεoEx�/m) and its variation with flow behavior index (n) at various
DL thicknesses. Here, The Smoluchowski velocity (vso) is used as a
eference velocity to compare the increase in magnitude of veloc-
ty of power-law fluids compared to Newtonian one. The average
elocity of pseudo plastics (n < 1) is many times higher than that
f conventional Smoluchowski velocity. This behavior is more pre-
ominant in thin EDL. Thus an increase in fluid velocity inside the
icrofluidic device is possible by altering the flow behavior index

n) of the working fluid (precisely making it slightly pseudo plas-
ic). Flow behavior index (n) having dependence on temperature,

H and ionic strength is easy to manipulate. Also, average veloc-

ty is high at thin EDL. This can be obtained by using a relatively
arger sized channel for same electrolyte concentration or using

ore electrolyte concentration for same channel size.

ig. 3. Velocity profiles of power-law fluids normalized with average velocity across
he microchannel.
Fig. 4. Variation of average velocity of power-law fluids normalized with Smolu-
chowski velocity of Newtonian fluid with flow behavior index (n).

Fig. 5 shows the average velocity (using Eq. (20)) normalized by
the generalized Smoluchowski velocity of various power-law fluids
(using Eq. (22e)) at various EDL thicknesses. It is observed that the
pseudoplastics (n < 1) posses higher average velocity. Hence, frac-
tion of average velocity to Smoluchowski velocity is greater than 1
for pseudoplastics and reaches close to 1 with increase in the flow
behavior index (n). The difference between average velocity and
Smoluchowski velocity vanishes at thin EDL and is predominant in
case of thicker EDL.

Fig. 6 shows the shear stress, � (using Eq. (16)) distribution
normalized with wall shear stress, �ws (using Eq. (17)) across the
channel half height at various EDL thicknesses. The shear stress dis-
tribution is independent of the flow behavior index n. For �h > 1, the
shear stress at the center of channel is zero and increases to wall
shear stress (�ws) at the channel wall. For thicker EDL, the driving
force is confined to entire channel half height and hence there is
thin EDL (�h = 50), the driving force rests very close to the walls
and hence the shear stress is zero over most of half height and
exponentially increases to wall shear stress at channel wall.

Fig. 5. Variation of average velocity normalized with generalized Smoluchowski
velocity with flow behavior index (n).
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Fig. 6. Normalized shear stress profiles across the channel for various �h.

The dynamic viscosity � and dynamic viscosity at channel wall
ws are calculated from Eqs. (15) and (18) respectively. Fig. 7

hows the profiles of fluid viscosity (�) normalized with viscos-
ty at wall (�ws) across the channel half height for various values
f flow behavior index n. Unlike Newtonian fluids, the viscosity
f power-law fluids is dependent on position across the channel.
lso, irrespective of flow behavior index, dimensionless viscosity
eaches 1 near channel wall. For shear thinning fluid or pseudo-
lastics (n < 1), viscosity is infinite at channel center due to absence
f velocity gradient and decreases to dynamic viscosity at channel
all. For n = 1, the viscosity is constant at entire cross-section and is

qual to dynamic viscosity at wall. For shear thickening or dilatant
uids (n > 1), viscosity is zero at center of channel (inviscid) due to
bsence of velocity gradient and increases to dynamic viscosity at
all.

The variation of dynamic viscosity at channel wall (�ws) for var-

ous values of flow behavior index, n is presented in Fig. 8a and b

ith reference to Newtonian fluid viscosity (�o). The dynamic vis-
osity evaluated using Eq. (18) is dependent on flow behavior index
, electrokinetic radius �h and applied electric field strength Ex.

ig. 7. Dimensionless dynamic viscosity profile across the channel for various values
f flow behavior index (n).

Fig. 8. (a) Variation of dynamic viscosity at channel wall (�ws) normalized with
Newtonian fluid viscosity (�o) with EDL thickness for various values of flow behav-
ior index (n). (b) Variation of dynamic viscosity at channel wall (�ws) normalized
with Newtonian fluid viscosity (�o) with applied electric field for various values of
flow behavior index (n). (c) Variation of dynamic viscosity at channel wall (�ws) nor-
malized with Newtonian fluid viscosity (�o) with zeta potential for various values
of flow behavior index (n).
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Fig. 10. (a) Variation of electric field to be applied (Ex) for various values of flow
ig. 9. (a) Effect of applied electric field on dimensionless volumetric flow rate for
arious values of flow behavior index (n). (b) Effect of zeta potential on dimension-
ess volumetric flow rate for various values of flow behavior index (n).

he dynamic viscosity at channel wall increases with flow behav-
or index. The variation with electrokinetic radius �h is presented
n Fig. 8a. For pseudo plastics (n < 1), the variation is negligible. For
ewtonian fluids, the ratio �ws/�o becomes 1 and for dilatant flu-

ds, the dynamic viscosity at channel wall increases with �h (i.e.,
ore for thin EDL).
Fig. 8b shows the dependence of dynamic viscosity at channel

all of various power-law fluids on applied electric field strength
x. The dependence is negligible for pseudoplastics (n < 1) and for
ilatants, increase in electric field strength increases the viscosity
t channel wall. Fig. 8c shows the dependence of dynamic viscos-
ty at channel wall of various power-law fluids on zeta potential.
he dynamic viscosity of channel wall increases with zeta poten-
ial. The dependence is negligible for pseudoplastics (n < 1) and
redominant in dilatants (n > 1).

Fig. 9a shows the affect of applied electric field on dimension-
ess volumetric flow rate for various values of flow behavior index n.
he volumetric flow rate (Q) is obtained from Eq. (20) and the refer-
nce flow rate (Qo) is that of a Newtonian fluid. It is inferred that the

olumetric flow rate of pseudoplastics (n < 1) are many times that
f Newtonian fluid. Also, increase in applied electric field strength
ncreases the volumetric flow rate. For dilatant fluids, the volumet-
ic flow rates decrease with flow behavior index as low to 10% of
behavior index (n) in order to achieve constant volumetric flow rate inside a
microchannel. (b) Variation of amount of applied electric field (Ex) for various values
of flow behavior index (n) in order to achieve 1 �L\min volumetric flow rate with
different electrolyte concentrations.

Newtonian fluid volumetric flow rate (Qo). This is because of high
viscosity of the shear thickening fluids. Also, application of high
external electric field does not ensure increase in volumetric flow
rates of dilatant fluids.

In Fig. 9b, the affect of zeta potential on dimensionless volumet-
ric flow rate for various values of flow behavior index n is studied.
It is observed that the volumetric flow rate of pseudoplastics (n < 1)
is many times that of a Newtonian fluid. Also, the volumetric flow
rate of pseudoplastics increases with increase in magnitude of zeta
potentials. However, the effect of zeta potential on flow rates of
dilatants fluids (shear thickening fluids) inside a microfluidic device
is negligible. Hence, it is practically difficult to ensure and con-
trol flow of shear thickening fluids inside a microfluidic device. It
is desirable to slightly alter the flow behavior index of the work-
ing fluid inside microfluidic device so as to ensure high volumetric
flow rates. Microfluidic devices which facilitate high heat and mass
transport rates become more advantageous with high throughput
(volumetric flow rates) for same amount of driving force (either
pressure driven or electric driven). In other words, it can be said that

lesser driving force is required to attain same amount of volumetric
flow rates.

Fig. 10a shows the amount of electric field Ex to be applied for
various power-law fluids to attain a constant volumetric flow rate



Physic

i
t
t
t
v
t
d
fl
d
fi

v
o
t
i
t
i
�
l
a
b
fl

4

m
o
m
H
d
p
fi
n
f
o
t
v
i
d
i
s

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

N. Vasu, S. De / Colloids and Surfaces A:

nside a microfluidic device. The amount of electrolyte concentra-
ion, C is maintained constant at 3.5 × 10−9 M (�h = 10). In order
o obtain a fixed volumetric flow rate, amount of electric field
o be applied, Ex increases with increase in flow behavior index
alue. This is because of increase in fluid viscosity. Also in order
o achieve a volumetric flow rate of 1 �L/min inside a microfluidic
evice, by slightly modifying the flow behavior index of working
uid to say n = 1 to n = 0.9, the amount of electric field to be applied
ecreases from 8100 to 5300 V/m, a reduction in 33% of necessary
eld strength which is highly desirable.

Fig. 10b shows the amount of electric field to be applied for
arious power-law fluids to attain a constant volumetric flow rate
f 1 �L/min at various electrolytic concentrations. It is observed
hat for pseudoplastics, the electric field required decreases with
ncrease in EDL thickness (�h). This is because for pseudoplas-
ics, the average velocity increases with EDL thickness (�h). Thus,
n order to have 1 �L/min in case of a pseudoplastic, for low
h more electric field strength has to be applied compared with

arge �h. For dilatant fluids, the amount of electric field to be
pplied increases with increase in EDL thickness (�h). This is
ecause, the average velocity decreases with EDL thickness in such
uids.

. Conclusion

Electroosmotic flow of power-law fluids in a rectangular
icrochannel is studied theoretically at high zeta potentials. It is

bserved that the pseudoplastics have higher average velocity in
icrochannel than that of dilatants, for same operating conditions.
ence, in order to obtain more volumetric flow rate in a microfluidic
evice, one can opt for a suitable working fluid which is pseudo-
lastic in nature rather than increasing the magnitude of electric
eld to be applied. By changing the flow behavior index from n = 1 to
= 0.9, a reduction in 33% of field strength to be applied is success-

ully demonstrated. Apart from this, parametric studies are carried
ut to assess the effects of electrokinetic radius (�h), zeta poten-
ial (�) and applied field strength (Ex) as shear stress distribution,
iscosity and volumetric flow rate during EOF of power-law flu-
ds at high zeta potentials. This understanding helps in efficient
esign of fluid flow in a microfluidic device which has applications

n site specific species transport such as drug delivery and species
eparation.
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