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7.2.5

Theorem 7.1
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or, writing out the first few terms,
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Linearity property

The linearity property as applied to Fourier series may be stated in the form of the
following theorem.

If f(f) = lg(f) + mh(f), where g(¢) and A(f) are periodic functions of period 7 and / and m
are arbitrary constants, then f{(¢) has a Fourier series expansion in which the coefficients
are the sums of the coefficients in the Fourier series expansions of g(¢) and /() multi-
plied by / and m respectively.

Clearly f(?) is periodic with period 7. If the Fourier series expansions of g(f) and /() are
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then, using (7.4) and (7.5), the Fourier coefficients in the expansion of f(7) are
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